Wednesday, 5 October 2016

Real 5G is, for some, Years Away but the need for design is imminent.

Real 5G is Still Years Away Even as The Wireless Industry Prepares for Its Arrival

Dated: Oct 3rd, 2016
Written by Jeffrey Burt Share:

Though the first standards for the new wireless technology are at least two years away, telcos, tech companies and governments already are preparing for its deployment. It's out there on the horizon, tantalizingly close but hard to see, and eagerly awaited by an increasingly connected world. It's called 5G, essentially the next generation of wireless connectivity after 4G LTE, and it holds the promise of more speed and capacity and lower latency to unlock the potential of everything from gaming, streaming video and virtual reality (VR) to the internet of things (IoT), smart cities, machine-to-machine (M2M) communications and autonomous cars. In a world where there will be 20 to 50 billion or more connected devices by 2020, 5G is seen as the technology that can connect all these systems and sensors and machines, enabling them to more easily link to the cloud and communicate with each other. It will be the answer for telecommunications companies whose networks are under increasing pressure from the skyrocketing traffic brought on by the proliferation of connected devices, video streaming, cloud computing, data analytics and other emerging trends. All that said, it's going to take some time for 5G to get here. The standards for 5G wireless aren't expected to be ratified until 2020, with ramping up happening after that. However, as the standards bodies get on with their efforts, work is being done on multiple fronts — from carriers and tech vendors to consortiums and governments — to push the industry in that direction and to be ready as the standards start to gel. At the same time, there's also work ongoing to improve the speeds and capabilities of 4G LTE, creating a scenario where the two technologies will co-exist going into the next decade. Still, for many organizations, 5G can't get here soon enough.

"Mobile data traffic on AT&T's national wireless network increased more 150,000 percent from January 2007-December 2015," Hank Kafka, AT&T's vice president of radio access and devices, wrote in an email to eWEEK. "We're engineering and designing for another 10X growth in volume across the network. Today, more than 60 percent of our network traffic is video and we expect continued growth. We believe 5G will add higher capacity, lower latency and faster throughput. We also anticipate it will bring great opportunity to further scale up the IoT, including smart grids, connected cars, homes and cities, connected health and more." Accelerating 5G Innovation Carriers estimate 5G will offer speeds 10 to 100 times faster than current 4G LTE networks. Picture downloading a full-length high-definition video onto a smartphone in seconds rather than minutes. There will be plenty of bandwidth to support all the devices and systems that will make up the IoT with latency at 1 millisecond, almost where it needs to be for such applications as V2X (vehicle-to-vehicle and vehicle-to-cloud) communications. The latency on today's 4G networks is about 50 ms.

"We are moving into a constantly connected world," Nigel Eastwood, CEO of New Call Telecom in the UK, wrote in a column in the Economic Times. "We are able to connect with friends anytime, anywhere, or do live stock trading or shop anytime. … The Internet of things, driverless cars, augmented reality will all be real in the coming years and all will depend on telecom networks for smooth, seamless functioning." Industry analysts are expecting the ramp uo to 5G to be quick once standards are in place and products start hitting the market.

ABI Research analysts are predicting that by 2025, mobile broadband operators worldwide will see 5G revenues of $247 billion. "5G will be a fast-growing cellular technology, most probably faster than preceding generations, including 4G," Joe Hoffman, managing director and vice president at ABI, said in a statement. "The technology migration over the next few years will mean the continued decline of 2G. 3G and 4G will grow in many markets, but 5G will generate new use cases and market revenues."

The building blocks for 5G are being put in place now. The 3GPP (3rd Generation Partner Project), which defined the standards for 4G, is beginning to work on creating the underlying standards around the new technology with the first step beginning in 2018 and the rest of the work running into 2019 and 2020. However, even as the standards work is ongoing, telcos and tech vendors are making incremental steps toward 5G. Carriers like AT&T, Verizon, T-Mobile, China Mobile, NTT DoCoMo and SK Telecom are taking steps toward 5G, such as running lab tests and working with standards bodies and industry consortiums to prepare for the advent of 5G. Verizon and AT&T are running field trials in cities in the United States as part of larger strategies to accelerate the development of 5G technologies. AT&T's Kafka noted that the carrier is also testing such technologies as fixed and mobile applications both indoors and outdoors as well as such capabilities as beam forming, beam tracking and multi- and single-user MIMO (multiple input, multiple output), all of which will be vitally important in 5G networks. Engineers also are testing how 5G technologies run in different spectrums. A broad array of tech vendors, from Intel and Qualcomm to Nokia, Ericsson, Samsung, Google and Cisco Systems, also are building out their portfolios to offer products that will be ready for 5G infrastructures. Recently, Ericsson announced the addition of a 5G NR radio for massive MIMO support that officials said will combine with other 5G technologies the company has released to give it all the components necessary to enable carriers to build 5G networks in 2017. Governments are taking steps to help fuel the innovation around 5G.

South Korean officials have promised $1.5 billion to help drive 5G development, while the Obama administration earlier this year rolled out a $400 million program. In addition, regulatory agencies in the United States, the European Union and in the Asia/Pacific region have all looked to ease the path toward the new wireless technology. In the United States, the Federal Communications Commission (FCC) in July approved opening new, higher-frequency spectrum for wireless technology in anticipation of the expected increase in traffic and to bolster innovation around 5G. Existing 3G and 4G networks currently operate in the crowded sub-6GHz spectrum, which is used by radio and television broadcasters, satellite operators and others. The higher-frequency bands are less crowded, but come with their own challenges. They would enable the use of millimeter waves (mmWaves), but they can't travel as far as lower-frequency signals and can be obstructed by walls, leaves and other obstacles. That will force the development of new antenna designs for mobile devices and the wider use of small cells that will relay traffic from one to another and ensure coverage over long distances.

The FCC is dealing with these issues by loosening rules as to where building owners and wireless providers can put small cells. However, FCC Chairman Tom Wheeler, in a keynote at the CTIA 2016 show, said carriers and the federal government may get pushback from state and local officials about the number of small cells that will be needed to support 5G connectivity.

There are about 200,000 cell towers in the United States, but millions of smaller cell sites will be required for the deployment of 5G. Telcos may run into "NIMBY" situations and the FCC is hoping to address that issue, Wheeler said. "If siting for a small cell takes as long and costs as much as siting for a cell tower, few communities will ever have the benefits of 5G," he said. "We recognize that this is a major concern and are committed to working to lessen these burdens and costs to ensure that 5G is available nationwide, while respecting the vital role that the communities themselves play in the siting process."

What Is 5G?

The talk by carriers and network equipment vendors of 5G and 5G-ready products is raising the question about how many of the promised benefits are real and how many are marketing hype. The tech industry only has to look back at when "virtualization" and "cloud" were just coming into the vernacular to see how terms can be co-opted by marketers to describe their products. Stephane Teral, senior research director of mobile infrastructure and carrier economics for IHS Markit, said in a recent report that much of what is being referred to now as 5G is really advanced 4G LTE technologies. Talk about 5G began in 2012, and ramped up a year later when NTT DoCoMo officials said they expected to have 5G capabilities in time for the 2020 Tokyo Olympics, Teral said. Verizon in 2015 then said it planned to have first commercial deployments of 5G in 2017. However, the analyst said that what will come over the next few years will be more an extension of the LTE and LTE-Advanced (LTE-A) standard. Real 5G technology will come when the 6GHz spectrum is put to use. "All the technology being developed for next year are really clearly for the 4G era, coming from the evolution of 4G features," Teral told eWEEK, adding that there is nothing new in the sub-6GHz bands, which is where mobile and wireless communications already are located. "What is it going to bring that we don't already have?" The real change will come with mmWaves in the higher spectrum, which won't come until 2020, he said.

John Delaney, associate vice president for mobility at IDC, also is tackling the question. In a recent research note, Delaney pointed out that the 3GPP has agreed on three broad use cases for 5G: enhanced mobile broadband, massive machine-type communications, and ultra-reliable and low-latency communications. While they don't mandate particular technologies, the use cases do point to "certain groups of technology" that will be needed to address them. "'Massive' communications, for example, indicates the need to use higher-frequency spectrum, which in turn points to advanced MIMO, advanced beam forming and beam tracking," Delaney wrote. "Another example is 'low-latency' communications, which points to the need for a more decentralized network architecture. … These use case-related technologies can therefore be seen as touchstones for 5G relevance." Real 5G also will bring the need for "new radio" (NR) and new radio access network (RAN) technologies, so that if an RAN uses technologies of 4G or other prior generations, it's probably not a 5G RAN. "We don't know exactly what 5G is yet," he wrote. "But we've reached the point where we know enough about 5G to see what it will not be and to get growing clarity about what it is likely to be. On that basis, we believe we're now entering the period in which vendors' claims to have 5G products need to be considered on their merits, rather than being dismissed out of hand for being 'too early.'" Akshay Sharma, research director in Gartner's Carrier Network Infrastructure group, is less concerned about whether products are 5G or pre-5G and more about the destination. "They're stepping stones to get to the final step of 5G, so it's all good," Sharma told eWEEK. "There are all kinds of different implementations." It comes down to becoming more agile and more flexible, running on more frequencies and being more application-oriented. When companies talk about pre-5G now, they understand essentially what 5G will be about and can help carriers build architectures that will be ready for 5G, he said. "As long as the architecture is directed toward a software-defined model rather than having to rip and replace hardware, that's what carriers are worried about," Sharma said, adding that they want to keep their capital and operational expenses as low as possible.

4G LTE Continues to Evolve While talk turns to 5G, 4G LTE continues to grow. LTE is expected to continue to evolve even as carriers and tech vendors push 5G development. The expectation is that the two technologies will co-exist well into the next decade. Some applications will run in the higher spectrum bands of 5G and others will remain in 4G LTE, similar in the way some traffic now is diverted from broadband networks onto WiFi. LTE is evolving into LTE-A, which is increasingly common now and later with LTE-A Pro. As LTE moves from one iteration to another, such advances as increased carrier aggregation and support of unlicensed spectrum are being addressed. Wider deployments of LTE-A Pro technologies reportedly are still a year away, though it's being tested now. IHS' Teral noted that the rollout of LTE and its variants is only gaining momentum now and that carriers have invested a lot of money and effort to build out their 4G networks. With all investment along with the significant speed, bandwidth and latency advances from 3G to 4G, LTE will continue to be a major factor in wireless networks beyond 2020. "LTE has long legs and is not likely to disappear soon," and will co-exist for a long time, he said. In a recent report, analysts with SNS Research said that while 5G will drive spending in the long term, LTE networks will generate significant revenues over the next several years. Mobile operators will generate $600 billion in service revenue from commercial LTE networks this year, a figure that will grow at more than 5 percent a year over the next four years. In addition, more than half of all LTE subscribers will be supported with LTE-A networks by 2020.

Also by 2020, infrastructure investments in LTE and 5G will hit $32 billion, including spending on macro cells, small cells, advanced RAN architectures and mobile core technologies. Network equipment vendors also are looking to use incremental evolution of 4G to help carriers on their paths to 5G. Nokia earlier this month unveiled not only 4.5G Pro, which officials said will boost capacity and speed in operators' networks as they move their infrastructures to 5G, but also plans for 4.9G as another incremental step toward the next-generation technology. The 4.5G Pro technologies, slated to arrive in 2017 and powered by Nokia's AirScale radio portfolio, will deliver 10 times the speeds of 4G networks, enabling service providers to take advantage of diverse licensed and unlicensed spectrum. Nokia executives say 4.9G will be even faster and offer more capacity while reducing latency to complement 5G radio coverage. Challenges Going Forward Despite the promises of 5G and the amount of effort being put behind its development, the road to 5G will have its share of hurdles. One worry has become possible fragmentation of the market. Verizon officials in July released specifications for vendors that will be used to help the carrier build out its 5G networks. The specifications were developed by members of its 5G Technology Forum, which includes Ericsson, Cisco, Intel, Nokia, Samsung and Qualcomm. The goal is to work on the specifications with vendors and contribute them to the 3GPP, officials have said. However, AT&T officials reportedly have pushed back at the move, saying it's unlikely that all of Verizon's specifications will be adopted by the 3GPP and that the result could mean products on the market that don't comply with the 3GPP's final standards.

AT&T instead is trying to get things ready for when the first of the 3GPP standards are released in 2018 to accelerate the commercialization of 5G. Ensuring fragmentation won't occur will be important as the industry marches toward 5G. Other challenges will include the investments that will be required to build 5G networks and the devices that can take advantage of them, while ensuring the security of the networks and the backward compatibility with 4G LTE networks. IHS' Teral said the industry also has to make a clear argument for use cases for 5G. Many of the ones being discussed currently can be addressed by 4G LTE networks and those that can be made for 5G are expensive. "The question is, what exactly will you bring to the party that you don't have today with LTE?" he said. "There is no shortage of use cases. The real problem is what is the use case you really need 5G for and how do you monetize it?" That said, about 75 percent of global operators that participated in an IHS Markit study said that the IoT was the top use case for 5G, according to Teral. Gartner's Sharma said carriers now need to be taking steps to prepare for the eventual arrival of 5G. Among the work they need to be doing now is retraining their engineers in such areas as DevOps and agile development as well as collaborating with cloud-based partners, he said. Carriers also need to embrace software-defined networking (SDN) and network-functions virtualization (NFV) in their infrastructures. "You can architect your data center today with these [5G] concepts in mind so when it gets fully baked, you're ready to go," Sharma said. "And you can implement it not with new people, but with the people you already have."

No comments:

Post a Comment